Poles of regular quaternionic functions

نویسنده

  • Caterina Stoppato
چکیده

This paper studies the singularities of Cullen-regular functions of one quaternionic variable, as defined in [7]. The quaternionic Laurent series prove to be Cullen-regular. The singularities of Cullenregular functions are thus classified as removable, essential or poles. The quaternionic analogues of meromorphic complex functions, called semiregular functions, turn out to be quotients of Cullenregular functions with respect to an appropriate division operation. This allows a detailed study of the poles and their distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Regular Moebius transformations of the space of quaternions

Let H be the real algebra of quaternions. The notion of regular function of a quaternionic variable recently presented by G. Gentili and D. C. Struppa developed into a quite rich theory. Several properties of regular quaternionic functions are analogous to those of holomorphic functions of one complex variable, although the diversity of the quaternionic setting introduces new phenomena. This pa...

متن کامل

The open mapping theorem for regular quaternionic functions

The basic results of a new theory of regular functions of a quaternionic variable have been recently stated, following an idea of Cullen. In this paper we prove the minimum modulus principle and the open mapping theorem for regular functions. The proofs involve some peculiar geometric properties of such functions which are of independent interest.

متن کامل

The zero sets of slice regular functions and the open mapping theorem

A new class of regular quaternionic functions, defined by power series in a natural fashion, has been introduced in [11]. Several results of the theory recall the classical complex analysis, whereas other results reflect the peculiarity of the quaternionic structure. The recent [1] identified a larger class of domains, on which the study of regular functions is most natural and not limited to t...

متن کامل

Regular Functions of Several Quaternionic Variables and the Cauchy{fueter Complex

We employ a classical idea of Ehrenpreis, together with a new algebraic result, to give a new proof that regular functions of several quaternionic variables cannot have compact singularities. As a byproduct we characterize those inhomogeneous Cauchy{ Fueter systems which admit solutions on convex sets. Our method readily extends to the case of monogenic functions on Cliiord Algebras. We nally s...

متن کامل

A new Dolbeault complex in quaternionic and Clifford analysis

The papers introduces a new complex of differential forms which provides a fine resolution for the sheaf of regular functions in two quaternionic variables and the sheaf of monogenic functions in two vector variables. The paper announces some applications of this complex to the construction of sheaves of quaternionic and Clifford hyperfunctions as equivalence classes of such differential forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008